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ABSTRACT

We study the dynamical and chaotic behavior of a disordered one-dimensional elastic mechanical lattice, which supports translational and
rotational waves. The model used in this work is motivated by the recent experimental results of Deng et al. [Nat. Commun. 9, 1 (2018)].
This lattice is characterized by strong geometrical nonlinearities and the coupling of two degrees-of-freedom (DoFs) per site. Although the
linear limit of the structure consists of a linear Fermi–Pasta–Ulam–Tsingou lattice and a linear Klein–Gordon (KG) lattice whose DoFs are
uncoupled, by using single site initial excitations on the rotational DoF, we evoke the nonlinear coupling between the system’s translational
and rotational DoFs. Our results reveal that such coupling induces rich wave-packet spreading behavior in the presence of strong disorder. In
the weakly nonlinear regime, we observe energy spreading only due to the coupling of the two DoFs (per site), which is in contrast to what is
known for KG lattices with a single DoF per lattice site, where the spreading occurs due to chaoticity. Additionally, for strong nonlinearities,
we show that initially localized wave-packets attain near ballistic behavior in contrast to other known models. We also reveal persistent
chaos during energy spreading, although its strength decreases in time as quantified by the evolution of the system’s finite-time maximum
Lyapunov exponent. Our results show that flexible, disordered, and strongly nonlinear lattices are a viable platform to study energy transport
in combination with multiple DoFs (per site), also present an alternative way to control energy spreading in heterogeneous media.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0089055

In recent years, substantial advances have been made in the field
of architected elastic devices following the large interest in stud-
ies of metamaterials. These studies on architected materials have
unearthed some exceptional structural, conformational, thermal,
topological, and vibrational properties in both the linear and
nonlinear regimes. However, in spite of all these advances, the
study of wave propagation in the presence of disorder for such
architected materials with several degrees of freedom is still miss-
ing. Using an experimentally verified model for a soft architected
material made from LEGO® bricks, we investigate wave-packet
spreading and the chaotic behavior of localized initial excita-
tions. We characterize energy spreading using the exponent of the
second moment of the energy distribution, and we find two dis-
tinct behaviors between the weakly and highly nonlinear regimes.
In fact, we observe almost ballistic energy spreading when the
nonlinearity is sufficiently strong for single site initial angu-
lar deflections. The chaoticity of the system, as measured by

estimating the maximum Lyapunov exponent, is in-between
the already known behaviors of the weak and strong chaos
regimes of the disordered nonlinear Klein–Gordon and nonlinear
Schrödinger lattices.

I. INTRODUCTION

Wave propagation in heterogeneous complex media has been
a subject of intensive research interest in recent years. Among
various systems, a large part of the conducted studies has been
concentrated in families of one-dimensional (1D) continuous and
discrete models1–4 by focusing mainly on the localization properties
of both the normal modes of finite systems, i.e., Anderson local-
ization (AL),5 as well as wave propagation in infinite media. The
successful extension of AL to many other systems after it was ini-
tially formulated for electronic systems has opened many research
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frontiers and applications.6–10 Experimental results on AL (see, e.g.,
Refs. 7–11) have stimulated further interest in AL for both quantum
and classical systems.

Regarding linear disordered 1D lattices, among different sys-
tems, special attention has been given to the tight binding electron
model,12 the linear Klein–Gordon (KG) lattice,13 and the harmonic
lattice.1,14–16 These models are not only relevant to various phys-
ical systems but also represent the linear limits of seminal non-
linear lattices, such as the discrete nonlinear Schrödinger equation
(DNLS), the quartic KG, and the Fermi–Pasta–Ulam–Tsingou
(FPUT) lattices.3,17–19 Within the context of phononic and photonic
lattices, these fundamental models have been adopted to describe a
variety of physical systems, and more recently, they have been used
as a testbed for novel wave phenomena.20,21

A common route to study the wave properties of disordered lat-
tices is through monitoring the time evolution of initially compact
wave-packets. For tight binding and linear KG models, the dynam-
ics after the excitation of such an initial condition is characterized
by a transient initial phase of spreading, followed by a phase of total
confinement to the system’s localization length. The width of the
wave-packet is of the order of the maximum localization length.22

On the other hand, for the harmonic lattice, along with the local-
ized portion of the energy, there is always a propagating part due
to the existence of extended modes at low frequencies. A quanti-
tative description of wave propagation in disordered 1D systems
of one degree of freedom (DoF) per lattice site was formulated in
Refs. 14, 16, and 23 where wave-packet spreading was quantified
using both analytical and numerical methods. Moreover, many vari-
ations of these 1D lattices have been studied extensively in several
works, including dynamical regimes ranging from the homogeneous
linear to the disordered nonlinear.11,24–32

As a natural extension to the above studies, an investigation
into the corresponding behavior in disordered lattices with more
than one DoF per site seems plausible. Not many studies along such
lines have been reported in the literature. The majority of exist-
ing works has taken the approach of making generalizations of the
tight binding model by assuming a linear coupling between two (or
more) 1D chains.33,34 Such coupling results in changes to the disper-
sion relation, thereby changing the energy transport properties. Our
recent work with a linear disordered phononic lattice35 is indeed an
attempt to fill this gap. The wave dynamics of disordered harmonic
chains with two DoFs per site appear to be quite interesting, deserv-
ing further investigations. Such systems have been useful in mod-
eling macroscopic mechanical devices, including granular chains,
highly deformable elastic assemblies, and origami lattices.36–41 This
allows for easy tunability of the system’s dispersion due to the geo-
metrical characteristics and material properties and makes these
systems attractive for several applications.

Here, we focus on highly deformable architected lattices, char-
acterized by a nonlinear response, which enabled the design of new
classes of tunable and responsive elastic materials. Several such soft
structures have already been reported, including bioinspired soft
robots,42,43 self-regulating microfluidics,44 reusable energy absorbing
systems,45,46 materials with programmable response,47 and informa-
tion processing via physical soft bodies.48 Furthermore, soft archi-
tected materials present opportunities to control the propagation
of elastic waves since their dispersion properties can be altered by

applying a large, nonlinear pre-deformation49–51 or changing the
geometry.40 To date, most of the investigations have predominantly
focused on linear stress waves or soliton solutions of such systems
due to the capability of the soft structures to support large-amplitude
nonlinear waves. Here, taking a step forward, we study a particular
lattice that supports both translational and rotational waves.40 Our
main goal is to understand how nonlinear lattice waves propagate in
the presence of strong disorder when the DoFs are coupled, as well
as the system’s chaoticity.

The rest of this paper is arranged as follows: In Sec. II, we
describe the Hamiltonian model of the lattice structure and also for-
mulate the system’s equations of motion. The dispersion relation of
the system, in addition to its dynamics in the linear limit, is also
discussed. In Sec. III, we investigate the nonlinear effects on wave
propagation under strong disorder, as well as study the system’s
chaoticity, and finally, in Sec. IV, we summarize our findings and
present our conclusions.

II. THE HAMILTONIAN MODEL AND ITS EQUATIONS

OF MOTION

The 1D elastic mechanical lattice studied in this work is assem-
bled from an array of aligned LEGO® crosses connected by flexi-
ble links52 as depicted in Fig. 1. This system constitutes a highly
deformable elastic lattice supporting both translational and rota-
tional waves (2 DoFs per site). In Ref. 40, the authors describe the
general equations of motion for a structure that takes into consid-
eration some of the possible geometrical variations of the lattice.
However, for the purposes of this work, we limit ourselves to an
aligned, symmetrical structure. The crosses are joined to their neigh-
bors by some flexible hinges, which are modeled using a combina-
tion of three linear springs. The stretching is modeled by a spring
with stiffness kl and the shearing is described by a spring ks, while
the bending is modeled by a torsional spring kθ [see Fig. 1(b)].

By making use of the spatial periodicity a, we recast the hori-
zontal deflections un at the nth lattice site to Un = un/a and change

time units to dimensionless time, T = t
√

kl/m, and the springs are
normalized as K(θ) = 4kθ/kla

2 and K(s) = ks/kl. The mass of each
unit of the cross mn is normalized such that Mn = mn/m, where m is
the average mass of the crosses. Similarly, the rotational moment of
inertia of each cross Jn is normalized to give the dimensionless rota-

tional moment of inertia 0n. Herein, Jn =
1

6
m†

n (d2 + b2) denotes

the rotational moment of inertia at the nth lattice site where the
mass, length, and width of either the horizontal or vertical strip
component of the cross is, respectively, denoted by m†

n, d, and b.53

This implies that in the case of the homogeneous chain, M = Mn

= mn/m = 1 and 0 = 0n = Jn/(ma2) ≈ 0.0759. For the rest of this
work, we assume the parameters of the experimental setup of Ref. 40
where each cross has mass m = 4.52 g (m = m), a = 42 mm, and
J = 605 g mm2. Also, the spring constants are kl = 71.69 N mm−1,
ks = 1.325 N mm−1, and kθ = 4.85 N mm. It is worth noting that for
the real LEGO® experiment in Ref. 40, each rigid unit is supported
on pins such that friction and damping are negligible (detailed
information is given in the supplementary material of Ref. 40).
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FIG. 1. (a) An architected, highly deformable, and elastic mechanical structure
that supports translational and rotational waves. (b) Schematic of the cross pairs
[by symmetry, the dynamics can be described by either the top row or the bot-
tom row of (a)] showing the translational and angular deflections. The connectors
(marked in red) model a combination of bending kθ , shear ks, and stretching
springs kl .

The Hamiltonian H of the top or bottom layer of the system is
thus given as (see Ref. 40 for details)

H =
N

∑

n=1

{

MnU̇2
n

2
+

0nθ̇
2
n

2
+

1

2
1n 2

LH +
K(s)

2
1n 2

SH

+
K(θ)

8

(

δn 2

θH +
1

2
δn 2

θV

)}

, (1)

where the dimensionless deflections are given by
1n

LH = Un+1 − Un + 1
2
(2 − cos θn − cos θn+1) , 1n

SH = 1
2

(sin θn+1 − sin θn) , δn
θH = θn+1 + θn, and δn

θV = 2θn. In Eq. (1), [̇]
denotes the derivative with respect to time.

We derive the equations of motion from the Hamiltonian
equation (1), which yields

MnÜn =
[

Un+1 − Un +
1

2
{2 − cos(θn) − cos(θn+1)}

]

−
[

Un − Un−1 +
1

2
{2 − cos(θn) − cos(θn−1)}

]

, (2)

0nθ̈n =
1

4
K(s) cos(θn) [sin(θn+1) − sin(θn)]

+
1

4
K(s) cos(θn) [sin(θn−1) − sin(θn)]

+
1

4
sin(θn) [2(Un − Un+1) + cos(θn) + cos(θn+1) − 2]

+
1

4
sin(θn) [2(Un−1 − Un) + cos(θn) + cos(θn−1) − 2]

−
1

4
K(θ)(θn+1 + 4θn + θn−1). (3)

A. Homogeneous linear system

First, let us consider the homogeneous system and linearize the
nonlinear terms (trigonometric terms) in Eqs. (2) and (3) by assum-
ing small angles, θn+p with p = {−1, 0, 1}, and taking a power series
expansion of the appropriate cosine and sine terms to give the first
two lowest order terms as

sin θn+p ≈ θn+p −
1

6
θ 3

n+p + · · · , (4)

cos θn+p ≈ 1 −
1

2
θ 2

n+p + · · · . (5)

The linear parts of Eqs. (4) and (5) are plugged appropriately into
Eqs. (2) and (3) to give the linear equations of motion as

MnÜn = Un+1 − 2Un + Un−1 (6)

and

0nθ̈n = K̃(θn+1 − 2θn + θn−1) − 6K(θ)θn, (7)

where K̃ = K(s) − K(θ). For the homogeneous case, Mn = M = 1
and 0n = 0 as already defined. A quick glance at Eqs. (6) and (7)
reveals that the two sets of DoFs are decoupled in the linear regime.
Equation (6) belongs to the linear FPUT class of equations, and
Eq. (7) is a linear KG-type equation.

We now consider solutions of the form

Xn =
(

Un(t)
θn(t)

)

= X eiωt−iqn, (8)

where X = [U0, 20] is the amplitude vector, ω is the cyclic fre-
quency, and q is the wave number. Inserting Eq. (8) into Eqs. (6)
and (7), we obtain the following eigenvalue problem for the allowed
frequencies DX = �2X, where the resultant dynamical matrix is

D =
(

2 − 2 cos q 0
0 1

20

[

(K(s) + 2K(θ)) − (K(s) − K(θ)) cos q
]

)

.

The corresponding dispersion branch for the transverse DoFs is

ω(U) =
√

2 − 2 cos q, (9)

while for the rotational DoFs,

ω(θ) =
1

√
40

√

2
(

K(s) + 2K(θ)) − 2(K(s) − K(θ)
)

cos q. (10)

The dispersion relation for the two different DoFs, as given by
Eqs. (9) and (10), is plotted in Fig. 2. An important feature for the
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FIG. 2. The two dispersion branches of the system for translational (ω(U)—red
curve) and rotational (ω(θ)—blue curve) DoFs [see, respectively, Eqs. (9)
and (10)].

system is that the rotational mode branch (blue curve in Fig. 2) starts
at a finite frequency. This means that linear rotational waves are not

supported for ω < 1√
40

√
6K(θ) since this frequency domain corre-

sponds to a bandgap. In fact, the linear dispersion relation of the
rotations can be directly mapped onto the one for the linear KG lat-
tice. On the other hand, the transverse displacements follow a typical
linear mass–spring dispersion relation.

B. Disordered linear system

In order to consider a disordered version of the system, we first
note that the disordered linear KG system exhibits AL (see Ref. 16
for the corresponding behavior of the linear FPUT). Additionally,
even though there are a number of ways to introduce disorder in
the system, we model the crosses of the architected lattice assum-
ing disorder in the masses Mn, which in turn implies disorder in the
rotational moments of inertia 0n. In practice, disorder in the system
can also be achieved by changing the material used to manufacture
the LEGO® bricks at each site without changing their geometrical
dimensions.52,53 In dimensionless units, the masses are normalized
to unity for a homogeneous chain; hence, we take this into consid-
eration when choosing the disorder distribution and take Mn from a
uniform probability distribution f (Mn) where

f (Mn) =
{

W−1, −W/2 < Mn − 1 < W/2,

0 otherwise.

W denotes the distribution width, and for this study, we choose
W = 1.8; hence, 0.1 ≤ Mn ≤ 1.9.

To study the dynamical behavior of the system, the equations
of motion are integrated using theABA864 symplectic integrator,54

which has been proved to be very efficient for the accurate integra-
tion of large Hamiltonian lattice models.55,56 This integration scheme
allows for energy conservation of the total energy H and keeps

the relative energy error 1H(T) =
∣

∣

∣

∣

H(T) − H(0)

H(0)

∣

∣

∣

∣

< 10−5 when the

integration time step is set to be τ = 0.1. In all our numerical simu-
lations, we employ fixed boundary conditions; i.e., U0 = UN+1 = 0,

FIG. 3. Spatiotemporal evolution of the energy distribution for a representative
realization with (a) velocity and (b) displacement single site initial excitation in the
linear system. The colorbars in (a) and (b) are in log-scale. (c) Time evolution
of the average participation number 〈P〉 and (d) estimation of the exponent β ,
related to the time evolution of the average second moment through 〈m2〉 ∝ Tβ .
For velocity (black curves) and displacement (magenta curves) initial excitations,
the mean values 〈·〉 are calculated from 100 disorder realizations, and the shaded
areas represent the statistical error (one standard deviation). The dashed lines in
(d) indicate β = 1.5 (top) and β = 0.5 (bottom), and the system energy for all
realizations is H = 10−4.

θ0 = θN+1 = 0 , U̇0 = U̇N+1 = 0, and θ̇0 = θ̇N+1 = 0. Furthermore,
the considered lattice size is large enough so that the energy does
not reach the lattice boundaries. A typical numerical integration of
the nonlinear system for T = 105 requires a lattice size of at least
2 × 105 sites.

1. Translational degrees of freedom

We start our analysis by first exploring the two possible single
site initial excitations of velocity and displacement for the transla-
tion DoFs; i.e.,

U̇N/2(0) =
√

2H/MN/2 or UN/2(0) = ν (11)

independently. In Eq. (11), the scalar ν is real, and its value is altered
to match the desired system energy. We fix the total system energy
at H = H0 and integrate the system up to T = 105 time units and
observe how the initially localized wave-packet evolves in time. A
typical scenario of the dynamics is shown in Figs. 3(a) and 3(b) for
H0 = 10−4. For single site velocity initial excitations, the energy dis-
tribution displays two main parts: a central localized part and an
expanding peripheral part, which is spreading beyond the excitation
point [see Fig. 3(a)]. Similar spreading characteristics are observed
in the dynamics for displacement initial excitations as depicted in
Fig. 3(b).

For a more quantitative description, we follow the time evolu-
tion of the participation number P and the second moment m2 of
the energy distribution to characterize the localization and spread-
ing properties of the wave-packet. The former quantity P is used
to quantify the number of highly excited sites in a lattice21 and is
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computed as

P = 1/
∑

h2
n, (12)

where hn = Hn/H is the normalization of the site energy Hn. In the
case of equipartition, for a lattice of size N, P = N, while the other
extreme gives P = 1, for a wave-packet in which only a single site is
highly excited. The second moment m2

16 of the energy distribution
given by

m2 =
∑

n

(n − n)2Hn/H (13)

is a measure of the wave-packet’s extent where n =
∑

n nHn/H is the
mean position of the energy distribution.

The time evolution of 〈P〉 indicates that a maximum value is
reached and remains constant for both velocity and displacement
excitations as illustrated in Fig. 3(c) by the black and magenta curves,
respectively. In this work, 〈·〉 denotes averages over 100 disorder
realizations. One of the differences between the two cases is that
velocity initial excitations yield slightly higher values of 〈P〉 when
compared to the 〈P〉 reached for displacement initial excitations.
This is due to the fact that more low frequency propagating modes
are excited for the case of velocity initial excitation than with dis-
placement initial excitation.16 The time evolution of 〈m2〉 for the two
excitations is also different for the same reason.

Regarding the second moment m2, the usual practice is to
assume that 〈m2〉 ∝ Tβ . Then, the parameter β is numerically esti-
mated by the time local derivative

β =
d log10〈m2(T)〉

d log10 T
. (14)

The exponent β is used to quantify the asymptotic behavior of 〈m2〉
for sufficiently large times. It is calculated by first smoothing the
m2(T) values of each disorder realization through a locally weighted
difference algorithm57,58 and then averaged over all realizations. The
computed β for the two cases saturates to β = 1.5 and β = 0.5
for, respectively, velocity and displacement single site excitations
as shown in Fig. 3(d). This is an expected result because we have
already shown the system to be practically a linear disordered FPUT
lattice since the translational DoFs do not couple to the rotational
DoFs. Here, we note that, according to the full system of equa-
tions [Eqs. (2)–(3)], single site translational excitations as given by
Eq. (11) will never couple the two DoFs. This is a particularity of the
structural geometry under consideration. Thus, whatever the initial
excitation energy, single site initial translations will always lead to
the linear behavior summarized in Fig. 3. For this reason, we shall
not consider such initial conditions in Sec. III.

2. Rotational degrees of freedom

We now turn our attention to the dynamics of single site rota-
tional excitations (angular deflection or the angular deflection time
derivative). These excitations are expected to follow the dynamics of
a discrete linear KG lattice as already explained earlier in Sec. II A.

FIG. 4. Similar to Fig. 3 but for initial angular deflections (magenta curves) and
angular deflection time derivatives (black curves). The vertical axes for (a) and (b)
are given in log10. In (c), we show the time evolution of 〈P〉, and the dashed line
in (d) indicates β = 0.

More specifically, we consider independently the initial excitations

θ̇N/2(0) =
√

2H/0N/2 or θN/2(0) = µ, (15)

where µ is real and is chosen to match the desired system energy
H = H0.

The energy distribution profiles for both angular deflection
time derivative (black curves) and angular deflection (magenta
curves) excitations [see Figs. 4(a) and 4(b)] show localized energy
distributions for times T & 104 after an initial phase of wave-packet
spreading. The subtle differences between angular deflection time
derivative and angular deflection initial excitations in panels (a)–(b)
of Fig. 4 are mainly due to the differences in the initially excited
modes of the system for each respective excitation. Thus, the dynam-
ics of the rotations in the linear limit show complete localization in
sharp contrast to the perpetual wave-packet spreading observed for
the translational DoFs [Figs. 3(a) and 3(b)]. This is a consequence of
the fact that the KG system [Eq. (7)] describing rotations is known to
map to the DNLS and experiences localization of all modes.59–61 To
quantify the localization for the initial angular deflections (magenta
curves) and angular deflection time derivatives (black curves), we
plot the time evolution of 〈P〉, which reaches constant finite values
after T & 4 × 104 [Fig. 4(c)]. A similar behavior is observed for 〈m2〉
(not shown here) for T & 103] in agreement to what is expected for
a linear disordered KG chain. The final saturation of the 〈m2〉 value
is clearly depicted in the evolution of the exponent β from the rela-
tion 〈m2〉 ∝ Tβ , which eventually becomes β = 0 as clearly seen in
Fig. 4(d), showing that indeed, the system is effectively a 1D linear
disordered KG chain.

III. DISORDERED NONLINEAR SYSTEM

Having considered the behavior of the system in the linear
limit, we further study the fully nonlinear system as described by
Eqs. (2) and (3). Before proceeding further, we reiterate that sin-
gle site initial translational velocity (U̇N/2) or displacement (UN/2)
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FIG. 5. Weakly nonlinear system: (a)–(d) Time evolution of 〈P〉 (12), 〈m2〉 (13), β (14), and 〈3〉 (16), respectively. The black (magenta) curves correspond to single site
initial angular deflection time derivative (angular deflection) excitations. The average values 〈·〉 are computed from 100 disorder realizations, and the lightly shaded areas
represent the statistical error (one standard deviation). The dashed blue and green curves that are not always visible due to their overlapping with other curves, respectively,
show results of the linearized system for the initial conditions given by Eq. (15). All results are for the weakly nonlinear regime with H = 10−8. The horizontal line in (c)
indicates β = 0.

excitations do not induce a nonlinear response. However, initial rota-
tional excitations induce both a nonlinear response on rotations as
well as nonlinear coupling between the two sets of DoFs. For the
rest of this work, we focus exclusively on single site (in the center of
the lattice) initial conditions of angular deflections as well as angular
deflection time derivatives.

A. Weakly nonlinear regime

We start by implementing single site angular deflections and
time derivatives of angular deflections as initial excitations for a suf-
ficiently small energy (H = 10−8) so that the system is in a weakly
nonlinear regime. With the physical system at hand, this energy cor-
responds to an initial angle deflection of ≈ 0.2◦. The time evolution
of 〈P〉 is shown in Fig. 5(a) where we observe saturation to a constant
value for each type of excitation [angular deflection time derivative
(black curve) and angular deflection (magenta curve)]. In fact, we
also plot, in the same figure, the corresponding linear result (dashed
curves), and we observe that the weak nonlinearity does not affect
the participation number. Nevertheless, we find that nonlinearity
plays a significant role on the evolution of 〈m2〉 and β . This is illus-
trated in Figs. 5(b) and 5(c) where both these quantities are found to
increase for the last two decades (T & 103) of the evolution, clearly
indicating energy spreading in the system.

To further explore the spreading, it is worthwhile to also inves-
tigate the chaoticity of the system using the finite-time maximum

Lyapunov exponent (ftMLE). It is often found, in systems with mul-
tiple degrees of freedom, that energy spreading is due to chaos
around the excitation region.4,62,63 The ftMLE,

3(T) =
1

T
ln

||w(T)||
||w(0)||

, (16)

is computed using the so-called standard method.64,65 w(T) is a vec-
tor of small perturbations from the phase space trajectory at time T
(also called the deviation vector), which we denote as

w(T) = [δU1(T), . . . , δUN(T),

δθ1(T), . . . , δθN(T),

M1δU̇1(T), . . . , MNδU̇N(T),

01δθ̇1(T), . . . , 0Nδθ̇N(T)], (17)

where δUn(T) and δθn(T) indicate small perturbations in posi-
tions, while MnδU̇n(T) and 0nδθ̇n(T) indicate small perturbations in
momenta for the two DoFs at the nth lattice site. The MLE is defined
as λ = limT→∞ 3(T). In Eq. (16), || · || denotes the usual Euclidean
vector norm. The MLE can be used to discriminate between reg-
ular and chaotic motions since λ = 0 for regular orbits and λ > 0
for chaotic orbits. The magnitude of the MLE can also be used as a
measure of the chaoticity: larger MLE values imply stronger chaotic
behaviors. More specifically, for chaotic trajectories, 3 attains a
finite positive value, while for regular orbits (for which λ = 0), 3

decreases to zero following a power law 3 ∝ T−1 (see Sec. 5.3. of
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Ref. 65 and references therein). An efficient and accurate method
to follow the evolution of w(T) is to numerically integrate the so-
called variational equations,66 which govern the vector’s dynamics,
together with the Hamilton equations of motion using the tangent
map method outlined in Refs. 67–69.

In Fig. 5(d), we show the calculated ftMLE, which is found to
follow the power law decay 〈3〉 ∝ T−1, and thus, the system does
not exhibit chaotic behavior, at least up to the times reached in our
numerical simulations. We note the presence of even weak, localized
chaos, for which P and m2 do not show signs of an increase, results
to the deviation from the law 3 ∝ T−1, making the time evolution
of 3 a very sensitive diagnostic tool of chaotic behavior. Thus, we
conclude that the observed energy spreading cannot be attributed to
chaoticity as is the case for other lattice models, including the single
DoF per site KG lattice.62,63,70

In order to explain the spreading, we need to further monitor
the energy density in the lattice as a function of time. In Fig. 6(a), we
show four snapshots of the energy density around the initial exci-
tation point (n = 0). The spatial distribution of energy is separated
into two distinct regions: a large amount of energy localized around
n = 0 and an extended tail with much lower energy (five orders of
magnitude less). In fact, if we consider the propagation of the higher
energy central part, especially for T . 103, we clearly observe a
leading wave-front (dashed vertical lines), which propagates slower
than the main leading wave-front. The latter corresponds to the low
energy regions [Hn . 10−13 in Fig. 6(a)], which propagates with a
normalized velocity close to one. On the contrary, the high energy
part around the center [Hn & 10−13] is propagating much slower
with a normalized velocity of ≈ 0.1. These two velocities corre-
spond, respectively, to the largest group velocities of the translation
and rotational branches of the dispersion relations shown in Fig. 2.
Thus, we conjecture that the two distinct parts of the energy distri-
bution, high and low, correspond, respectively, to the two different
types of DoFs, i.e., the rotational and translation deflections.

Furthermore, as shown by the snapshots for T & 104 in
Fig. 6(a), at later times, only the lower (translation) part of the energy
continues to spread. This fact is corroborated by calculating the
exponent of the second moment for energies lower (larger) than a
threshold (H = 10−13) as shown in Fig. 6(b). The exponent β for
the high energy central part almost vanishes (red curve), indicat-
ing no spreading, while for the low energy region value of β (black
curve) is finite revealing spreading. Thus, we conclude this sub-
section by explaining the dynamics in the following manner. In the
weakly nonlinear regime, the role of the nonlinearity is to induce
spreading by stimulating the translation DoFs (which have an FPUT
character) through the nonlinear coupling. In this way, the energy
spreading in this regime is characterized by a hybrid of KG-like and
FPUT-like behaviors. In addition, the rate of wave-packet spread-
ing as quantified by β shows no defined asymptotic behavior but
rather a dependency on time [Fig. 5(c)]. This is in accordance with
the results obtained for a weakly nonlinear FPUT lattice by Lepri
et al.23

B. Strongly nonlinear regime

Let us move away from the weakly nonlinear regime and
increase the nonlinearity of the system by increasing the initial

FIG. 6. (a) Average energy distribution profiles of 100 disorder realizations for
T = 5 × 102 (red curve) , T = 103 (blue curve), T = 104 (magenta curve), and
T = 5 × 104 (black curve). The dotted horizontal line marks the energy 〈Hn〉
= 10−13, while the vertical dashed lines indicate the position of the slower
wave-front at the indicated times. (b) Time evolution of the exponents β for the
central part (solid red curve) and the tails (solid black curve). The lightly shaded
regions in (b) indicate the statistical error (one standard deviation). All panels are
for angular deflections of system energy H = 10−8.

excitation energy to H = 5 × 10−3. This energy corresponds to large
initial angle deflections of about 30◦. Note that this value of energy
leads to strong nonlinear behavior. The system, in this regime, shows
a completely different behavior of spreading as is indicated by the
increase of 〈P〉 during the time evolution as shown in Fig. 7(a).
The number of highly excited sites grows in time contrary to what
we observed for the weakly nonlinear regime, which shows prac-
tically no growth in 〈P〉 at long times. As expected, this increase
of participating particles leads to wave-packet spreading, and this
is confirmed by the time evolution of 〈m2〉, which is also increas-
ing as indicated in Fig. 7(b). A feature we observe in this strong
nonlinear regime is that the dynamics no longer depends on the
type of initial condition (angular deflections or time derivatives of
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FIG. 7. (a)–(c) Similar to Figs. 5(a)–5(c). (d) Average energy
density profiles over 100 disorder realizations at T = 102 (blue
curve), T = 5 × 102 (red curve), and T = 103 (black curve).
Results in all panels are for energy H = 5 × 10−3.

angular deflections). This is noticeable from the practically over-
lapping black (time derivatives of angular deflections) and magenta
(angular deflections) curves in Figs. 7(b) and 7(c). To quantify wave-
packet spreading, we estimate the exponent of 〈m2〉 ∝ Tβ , which is
found to acquire values around β ≈ 2 as shown in Fig. 7(c). This
value indicates very strong spreading corresponding to a near ballis-
tic propagation. We find this result to be quite interesting since the
nonlinearity of the flexible architected material under study is strong
enough to bring the system to ballistic behavior, which is not always
the case in other systems, such as the FPUT and KG lattices.21,71 In
fact, the other example to our knowledge, where near ballistic behav-
ior in a disordered system is observed, is for mechanical lattices
featuring non-smooth nonlinearities due to Hertzian forces.11

Also, in this strongly nonlinear regime, the distinct behav-
ior of the two types of DoFs that was observed in Fig. 6(a)
is now lost. According to Fig. 7(d), by showing the mean pro-
file of the energy distribution, we identify a large part of the
energy being localized around the center and a propagating tail
traveling almost ballistically. This is expected since according
to Eqs. (2) and (3), the coupling of the two types of DoFs
is enhanced at each lattice site when the rotations are of high
amplitude. Thus, we no longer distinguish between a KG-like
and FPUT-like evolution of the energy profiles. We have also
considered a range of system energies between H = 10−8 and
10−3 and found that the distinction between KG- and FPUT-like
behaviors gradually disappears as the system energy is increased.
Some of the results for the intermediate energies are reported
in Ref. 72.

Regarding the chaoticity of the system, for such high ini-
tial angles and thus strong nonlinearity, we find the dynamics to
be chaotic. This is evident in Fig. 8(a) where the mean value of
the ftMLE 3 equation (16) is shown to be decreasing in a much
slower rate compared to regular dynamics (dashed line). This type
of chaotic behavior, where the ftMLE does not reach an asymptotic
constant value, has recently attracted much attention and appears
to be a particular case of chaos spreading,4,31,63 and it is related to
the fact that as the wave-packet spreads, the constant total energy is
shared among more sites and consequently, the energy per excited

site (which plays the role of active nonlinearity strength) decreases.
Consequently, the ftMLE, which is a global measure of chaos, is also
decreasing.

However, different to what was found in Refs. 4, 31, and 63, for
the architected lattice under study, here, the slope of 〈3〉 does not
reach a constant value even for the largest possible angular deflec-
tion of 45◦. Thus, for the sake of completeness and to be able to
compare the results regarding the chaos spreading of the soft archi-
tected lattice with other models in the literature, we extend our
numerical simulations using even larger initial energies. In partic-
ular, in Figs. 8(b) and 8(c), we show results using an initial energy of
H = 10−1. Note that this value of energy leads to even stronger non-
linear behavior than the penultimate case above. We also observe in

FIG. 8. (a) Time evolution of the average ftMLE, Eq. (16), 〈3〉 for the strongly
nonlinear regime angular deflections and time derivatives of angular deflections
as initial excitations for energy H = 5 × 10−3. The red dashed line indicates the
power law 〈3〉 ∝ T−1. (b) Similar to (a) but for energy H = 10−1. Here, the red
dashed line indicates the power law 〈3〉 ∝ Tκ , with κ = −0.28. (c) Time evo-
lution of the exponent κ at energy H = 10−1. In all panels, the magenta and
black curves, respectively, show results for angular deflections and time deriva-
tives of angular deflections as initial excitations. The magenta horizontal dashed
line indicates κ = −0.28.
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Fig. 8(b) that the ftMLE reaches a clearly constant slope with which
it is decaying. In particular, the slope of the exponent assuming that
〈3〉 ∝ Tκ is found to be approximately κ = −0.28 for both angu-
lar deflections and time derivatives of angular deflections. Note that
this asymptotic value of the exponent κ is comparable to the cor-
responding values for the ftMLE in the more studied cases of 1D
lattices, namely, the disordered DNLS equation and the disordered
KG model.62,63 More precisely, the value −0.28 lies between the val-
ues obtained for the so-called weak (κ = −0.25) and strong chaos
(κ = −0.3) regimes of these 1D models having a single DoF per
lattice site.

IV. SUMMARY AND CONCLUSIONS

We have studied numerically energy spreading and chaos in
a nonlinear disordered architected mechanical lattice. The lattice
under consideration describes rotating LEGO® bricks connected
with flexible links, which was recently studied experimentally. The
in-plane motions of the lattice are described by two DoFs per lat-
tice site, i.e., translations and angular deflections. Furthermore, in
the linear limit of the aligned structure, the two DoFs per site are
completely decoupled. In this state, the lattice shows two distinct
behaviors corresponding to the FPUT and KG-like behaviors for
translational and rotational DoFs, respectively. For both cases, we
review results regarding the behavior of energy spreading under the
effect of disorder.

Using single site angular deflections and time derivatives of
angular deflection initial excitations, we studied the system for dif-
ferent strengths of nonlinearity focusing on the weakly nonlinear
and strongly nonlinear regimes. For the weakly nonlinear regime, we
have shown that the total energy density of the lattice is split into two
parts: (i) a slow spreading part around the excitation point follow-
ing the KG-like behavior and (ii) the fast propagating tails of lower
energy, which travel with the speed of sound of the corresponding
FPUT lattice and are responsible for the evolution of the second
moment of the total energy distribution. For sufficiently large ini-
tial excitations, the strong nonlinearity of the flexible architected
lattice forces the initial wave-packet to spread ballistically and the
distinction between a KG- and an FPUT-like behavior is lost. We
note here that a ballistic behavior under strong disorder is not easily
achieved, and here, the responsible physical mechanism is the large
geometrical nonlinearity.

Additionally, we show that chaos is found to persist during the
energy spreading, although its strength decreases in time as quan-
tified by the evolution of the system’s ftMLE. Here, the power law
time evolution of the exponent of the ftMLE is found to acquire a
value that lies between the ones obtained for the so-called weak and
strong chaos regimes of the well studied nonlinear KG lattice.

Our results show that flexible architected elastic lattices with
coupled DoFs per site provide a modern physical platform to study
and observe rich wave dynamics, which cannot otherwise be seen
with classical uncoupled fundamental models. Some interesting
directions arise from our results, such as the study and manipula-
tion of energy propagation by tuning the dispersion characteristics
of rotations, by changing the shear and bending stiffness. Further-
more, here, we only considered an aligned structure where the two
DoFs per site are uncoupled in the linear limit. Extensions to other

geometries, where the linear modes are polarized, will probably
reveal a variety of spreading characteristics and provide a means of
controlling energy transport in highly heterogeneous lattices.
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